FLOCCULATION, REINFORCEMENT, AND GLASS TRANSITION EFFECTS IN SILICA-FILLED STYRENE-BUTADIENE RUBBER

Author:

Robertson C. G.1,Lin C. J.1,Bogoslovov R. B.2,Rackaitis M.1,Sadhukhan P.1,Quinn J. D.1,Roland C. M.2

Affiliation:

1. 1Bridgestone Americas, Center for Research and Technology, 1200 Firestone Parkway, Akron, OH 44317-0001

2. 2Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342

Abstract

Abstract The introduction of silanes to improve processability and properties of silica-reinforced rubber compounds is critical to the successful commercial use of silica as a filler in tires and other applications. The use of silanes to promote polymer–filler interactions is expected to limit the development of a percolated filler network and may also affect the mobility of polymer chains near the particles. Styrene-butadiene rubber (SBR) was reinforced with silica particles at a filler volume fraction of 0.19, and various levels of filler–filler shielding agent (n-octyltriethoxysilane) and polymer–filler coupling agent (3-mercaptopropyltrimethoxysilane) were incorporated. Both types of silane inhibited the filler flocculation process during annealing the uncured rubber materials, thus reducing the magnitude of the Payne effect. In contrast to the significant reinforcement effects noted in the strain-dependent shear modulus, the bulk modulus from hydrostatic compression was largely unaltered by the silanes. Addition of polymer–filler linkages using the coupling agent yielded bound rubber values up to 71%; however, this bound rubber exhibited glass transition behavior which was similar to the bulk SBR response, as determined by calorimetry and viscoelastic testing. Modifying the polymer–filler interface had a strong effect on the nature of the filler network, but it had very little influence on the segmental dynamics of polymer chains proximate to filler particles.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3