IMPROVEMENT OF SILICA-REINFORCED NATURAL RUBBER TIRE TREAD COMPOUNDS BY JOINT HYBRIDIZATION WITH SMALL AMOUNTS OF SECONDARY FILLERS AND POLYMERS

Author:

Sattayanurak S.12,Sahakaro K.1,Kaewsakul W.2,Dierkes W. K.2,Reuvekamp L. A. E. M.23,Blume A.2,Noordermeer J. W. M.2

Affiliation:

1. Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, 94000 Thailand

2. Elastomer Technology and Engineering, Department of Mechanics of Solids, Surfaces and Systems, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

3. Apollo Tyres Global R&D B.V., Colosseum 2, 7521 PT Enschede, The Netherlands

Abstract

ABSTRACT To improve the properties of silica-reinforced truck tire tread compounds, especially abrasion resistance, the effect of vinyl contents in butadiene rubber (BR) or solution styrene–butadiene rubber (SSBR) as secondary polymers in silica-filled natural rubber (NR) compounds at a ratio of 80/20 phr is investigated in the first part of this study. By increasing the levels of vinyl contents in BR in combination with NR, a better Payne effect, 300% modulus, reinforcement index, and tan delta at −20 and 0 ° C are obtained, whereas the tensile strength, elongation at break, and DIN abrasion resistance index decrease with increasing vinyl contents. Higher vinyl contents in SSBR result in improvements in Payne effect, 300% modulus, tan delta at −20 and 0 °C but only a small improvement in DIN abrasion resistance index. Combinations of secondary fillers and polymers in silica-filled NR are covered in the second part of present study. Silica/carbon black–filled NR/BR and NR/SSBR, respectively, and silica/organoclay–filled NR/BR and NR/SSBR show positive effects on scorch time and optimum cure time, with only slight changes in Payne effect, tensile properties, tan delta at −20 and 0 ° C and DIN abrasion resistance as compared with compounds with carbon black N134. The use of organoclay results in an enhanced Payne effect and tan delta at 60 °C, indicative of reduced filler–filler networking and consequently a lower rolling resistance of tire tread compounds as compared with the compound without organoclay. The specific combination of a small amount of organoclay replacing the same amount of silica, together with some of the NR replaced by high-vinyl BR, promises a substantial overall boost in wet and ice traction, abrasion, and wear resistance as compared with straight NR/silica tire treads. This new observation helps to overcome one of the main shortcomings of NR/silica compounds: their generally low wear resistance.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3