A New Constitutive Model for the Compressibility of Elastomers at Finite Deformations

Author:

Bischoff Jeffrey E.1,Arruda Ellen M.1,Grosh Karl1

Affiliation:

1. 1Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125; 3170; e-mail: arruda@umich.edu

Abstract

Abstract Although traditional constitutive models for rubbery elastic materials are incompressible, many materials that demonstrate nonlinear elastic behavior are somewhat compressible. Clearly important in hydrostatic deformations, compressibility can also significantly affect the response of elastomers in applications for which several boundaries are rigidly fixed, such as bushings, or triaxial states of stress are realized. Compressibility is also important for convergence of finite element simulations in which a rubbery elastic constitutive law is in use. Volume changes that reflect compressibility have been observed historically in both uniaxial tension and hydrostatic compression tests; however, there appear to be no data obtained from both types of tests on the same material by which to validate a compressible hyperelastic law. In this paper, we propose a new compressible hyperelastic constitutive law for elastomers and other rubbery materials in which entropy and internal energy changes contribute to the volume change. Using data from the literature, we show that this law is capable of reproducing both the pressure—volume response of elastomers in hydrostatic compression, as well as the stress—stretch and volume change—stretch data of elastomers in uniaxial tension.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3