FURTHER EVIDENCE OF FILLER–FILLER MECHANICAL ENGAGEMENT IN RUBBER COMPOUNDS FILLED WITH SILICA TREATED BY LONG-CHAIN SILANE

Author:

Mahtabani Amirhossein1,Alimardani Mohammad1,Razzaghi-Kashani Mehdi1

Affiliation:

1. Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, I.R. Iran

Abstract

ABSTRACT The present study discusses that filler–filler mechanical engagement resulting from the grafted long-chain silanes on the silica surface is indeed a reinforcing mechanism in rubber composites, as already speculated by nonlinear viscoelastic properties in our previous study. The existence and severity of such a phenomenon are assessed purely by isolating the energetic contribution of reinforcement from interfering with filler mechanical engagement in the silica network formation and breakdown processes. In a novel approach, the driving force of fillers to flocculate energetically at elevated temperatures was defined using surface energy theories, and it was adjusted to be similar in two composites having silica treated by short- and long-chain silanes. Filler–filler mechanical engagement was monitored by tracking network formation (filler flocculation) in a matrix of styrene–butadiene rubber and also by conducting various dynamic viscoelastic experiments on liquid paraffin suspensions having short- and long-chain silica of similar surface energy. Results consistently confirmed the existence of mechanical engagement between silica particles having the long-chain silane in both rubber compounds and paraffin suspensions. The results may find applications in the rolling resistance of tires, for example, where stabilization of the filler network by displacing the peak energy dissipation of the network breakdown from applied service strains to larger values would be of technical importance.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3