MODELING AND OPTIMIZING PROPERTIES OF NANOCLAY–NITRILE RUBBER COMPOSITES USING BOX–BEHNKEN DESIGN

Author:

Balachandran Meera1,Bhagawan S. S.1,Muraleekrishnan R.2

Affiliation:

1. 1Department of Chemical Engineering and Materials Science, Amrita Vishwa Vidyapeetham, Coimbatore 641105, India

2. 2Propellant Engineering Division, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, India

Abstract

Abstract The mechanical behavior of acrylonitrile butadiene copolymer (NBR)–organomodified layered silicate (nanoclay) was modeled using design of experiments approach. A Box–Behnken design with three factors and three levels was used to model the relationship between properties of NBR nanocomposites and the ingredients. The factors considered in the design were silica content, nanoclay loading, and dicumyl peroxide content. The nanocomposites were evaluated for tensile strength, modulus, elongation at break, oxygen permeation rate, and effect of oil and heat aging on mechanical properties. Regression equations were generated to model the properties of interest and generate response surfaces and contour plots. The predicted properties of the nanocomposites were in good agreement with the experimental results. The contour plots were overlaid within the applied constraints to identify the combination of factor ranges that gives the optimal performance of the nanocomposites for application as control system bladders in satellite launch vehicles.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3