Universal Properties in Filler-Loaded Rubbers

Author:

Kilian H. G.1,Strauss M.1,Hamm W.1

Affiliation:

1. 1Abteilung Experimentelle Physik, University of Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany

Abstract

Abstract Stress-strain cycles in filler loaded rubbers can be described with the aid of the van der Waals-network model. Reinforcement comes about by drawing pairs of filler particles apart. Reinforcement is observed because the intrinsic strain within the rubber bridge which is located between the filler particles exceeds the macroscopic strain very much, so much that interfacial slippage is enforced. The rubbery intra-cluster bridge distribution is represented by three dominant filler particle distances. One of them describes direct filler-to-filler (FF-) contacts, the critical strength of which is different from the filler-to-matrix (FM-) contacts of the filler-to-filler chains which are located on the whole surface of the filler particles. Formation of clusters is described by a power law. Stress-strain experiments are described with the aid of this model for different filler-matrix combinations (NR, SBR, carbon blacks, silica). Many universal features are observed: The intra-cluster rubber bridges display the same mean thickness when being related to the radius of the primary filler particles. The exponent in the power law is always identical. The deformation mechanisms, including irreversible slippage, do not to depend on the type of strain (simple extension, uniaxial compression). Yet, the Einstein-Smallwood effect turns out to be anisotrop so far as quasipermanent filler-to-matrix interactions seem to be determined by normal forces in the particles surfaces only. Different filler and matrix combinations display different strengths of the FF- and FM-contacts independent of the type of strain.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3