Affiliation:
1. 1Rotoflex, Inc., 4041 Clipper Court, Fremont California 94538
Abstract
Abstract
An innovative flexible faced mechanical shaft seal using common elastomeric materials was designed and tested to determine its friction coefficient at a wide range of temperatures and speeds, its rate of heat generation, and its feasibility for use in the process industry. The new seal was constructed using an elastomeric rotating element stretched over the sleeve to at least 20 percent of its original length and an unlapped silicon carbide stationary annular ring. It was found that the main advantage of the elastomeric seal is its ability to maintain stable lubrication with a fluid film considerably thinner than that of traditional hard face seals, and consequently achieve negligible net leakage. This is particularly significant with respect to control of volatile organic carbon emissions. An experimental device was designed for precise measurement of the friction coefficient as well as the long term friction behavior of seal pairs in a wide range of liquid pressure and temperature. The original data were obtained for friction coefficient of EPDM, HNBR, FKM, and TFE/P type elastomers in contact with silicon carbide in the temperature range 15–110°C, linear speeds 0–12 m/s, water pressure 0.15–0.40 MPa, and effective contact pressure 0.8–1.2 MPa. Experiments showed that the friction coefficient constantly grows, typically from 0.05 to 0.15 at sliding speeds of 2–12 m/s, with temperature increases from 15 to 70°C. The temperature behavior of the friction coefficient above 70°C greatly depends on the elastomer. For high temperature elastomers, such as FKM, the friction coefficient may decrease slightly at 70°C; whereas, for EPDM, it continues to increase as temperature increases.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献