Affiliation:
1. 1Degussa AG, Inorganic Chemical Products Division, Applied Research and Technical Service for Fillers and Rubber Chemicals, Kölner Strasse 122, D-5047 Wesseling, Federal Republic of Germany
2. 2Centre de Recherches sur la Physico-Chimie des Surfaces Solides, 24, Avenue du Président Kennedy, F-68200 Mulhouse, France
Abstract
Abstract
Inverse gas-solid chromatography, operated at infinite dilution, has been used to assess the surface energies of silicas, both fumed and precipitated. The dispersive components of the surface free energies of the silicas were calculated from the free energies of adsorption, corresponding to the —CH2— group, obtained from n-alkane adsorption. The specific components of the surface energies were evaluated separately by comparison of the free energies of adsorption of polar probes with those of n-alkanes, based on the surface areas covered by the probe molecules. The results indicate that while the dispersive components of silica surface energies is somewhat higher for the fumed silicas, the specific components are much higher for precipitated silicas, probably resulting from the higher silanol concentration on their surfaces. Moreover, the interaction able to take place between rubber matrix and the silicas are also estimated chromatographically from the adsorptions of low-molecular-weight analogs of elastomers. The free energies and enthalpies indicate that the interactions of functional groups with the fillers decrease in the order of nitrile, phenyl ring, double bond. The saturated rubber analogs show lower interactions with silicas. The lowest interactions of iso-alkanes imply poor interactions between butyl rubber and the fillers. As expected, the experimental data reflect an attenuation of polymer-silica interactions with decreasing content of functional groups and degree of unsaturation in NR, BR, SBR, and NBR.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
145 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献