Filler-Elastomer Interactions. Part I: Silica Surface Energies and Interactions with Model Compounds

Author:

Wang Meng-Jiao1,Wolff Siegfried1,Donnet Jean-Baptiste2

Affiliation:

1. 1Degussa AG, Inorganic Chemical Products Division, Applied Research and Technical Service for Fillers and Rubber Chemicals, Kölner Strasse 122, D-5047 Wesseling, Federal Republic of Germany

2. 2Centre de Recherches sur la Physico-Chimie des Surfaces Solides, 24, Avenue du Président Kennedy, F-68200 Mulhouse, France

Abstract

Abstract Inverse gas-solid chromatography, operated at infinite dilution, has been used to assess the surface energies of silicas, both fumed and precipitated. The dispersive components of the surface free energies of the silicas were calculated from the free energies of adsorption, corresponding to the —CH2— group, obtained from n-alkane adsorption. The specific components of the surface energies were evaluated separately by comparison of the free energies of adsorption of polar probes with those of n-alkanes, based on the surface areas covered by the probe molecules. The results indicate that while the dispersive components of silica surface energies is somewhat higher for the fumed silicas, the specific components are much higher for precipitated silicas, probably resulting from the higher silanol concentration on their surfaces. Moreover, the interaction able to take place between rubber matrix and the silicas are also estimated chromatographically from the adsorptions of low-molecular-weight analogs of elastomers. The free energies and enthalpies indicate that the interactions of functional groups with the fillers decrease in the order of nitrile, phenyl ring, double bond. The saturated rubber analogs show lower interactions with silicas. The lowest interactions of iso-alkanes imply poor interactions between butyl rubber and the fillers. As expected, the experimental data reflect an attenuation of polymer-silica interactions with decreasing content of functional groups and degree of unsaturation in NR, BR, SBR, and NBR.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3