Carbon Black Dispersion and Reinforcement

Author:

Dannenberg E. M.1

Affiliation:

1. 1Research and Development Department, Godfrey L. Cabot, Inc., Boston, Mass.

Abstract

Abstract Different mixing conditions were employed to obtain vulcanizates, varying only in degree of carbon black dispersion, with natural and synthetic rubbers, using a single sample of a commercial grade HAF black. Light transmittance measurements on dilute solutions of dissolved unvulcanized stocks prepared by an improved technique were used to evaluate the size of carbon black aggregates in cold GR-S and natural rubber stocks. Electron micrographs of films show the high degree of carbon black aggregation, even after prolonged mixing. A limiting degree of dispersion or a minimum aggregate size is obtained very rapidly as mixing is increased. Black incorporation and dispersion appear to take place simultaneously; a high degree of abrasion reinforcement was noted in most rubbers with mixing (less than 75 seconds) barely sufficient to incorporate the black. Carbon blacks in general respond rapidly to mixing, and the chainlike aggregates characteristic of reinforcing carbon blacks observed under the electron microscope are practically unchanged after mixing with rubber. Dispersion of carbon blacks during mixing depends on the packing and coherence of their agglomerates resulting from such factors as surface oxidation and extent of mechanical bulk densification. There is some evidence that oil-type furnace blacks disperse more easily than channel blacks. A major cause of the disappointing abrasion reinforcement with most noncarbon pigments possessing extreme fineness may be the tendency for excessively strong aggregate binding and resulting large aggregates in rubber. A striking rise in electrical resistivity was observed as the amount of mixing was increased. As the size of the aggregates did not change, the higher electrical resistivity cannot be explained by assuming better dispersion and breakdown of conductive carbon paths. Increased mixing might provide better distribution of the carbon aggregates in in the rubber matrix without change in size of aggregates.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3