Accessibility of the Carbon Black Particle Surface to Elastomers

Author:

Aboytes P.1,Voet A.1

Affiliation:

1. 1J. M. Huber Corporation, Research Department, Borger, Texas

Abstract

Abstract Experimental carbon blacks were prepared with the generally encountered slit-shaped pores of discrete dimensions of 9,12.5, and 16 A˚ width in greatly differing size distribution. Equilibrium adsorption in the saturation range was determined in n-hexane for butadiene—styrene elastomers of the SBR type of average molecular weights of 1500; 2000; 15,000; and 300,000. In attempting to correlate the saturation adsorption values with carbon black surface areas, it was found that a simple linear relation in the range investigated could only be obtained by assuming that pores of 9 A˚ width were inaccessible to SBR of 1500 and 2000 MW; that pores of 9 and 12.5 A˚ width were inaccessible to SBR of 15,000 MW; and that all pores smaller than 20 A˚ width were inaccessible to SBR of 300,000 MW. The data indicated that there are no differences between high, regular and low structure blacks in saturation elastomer adsorption under conditions of equivalent dispersion. Equally, upon breaking the persistent carbon chain structure by dry ball milling in an inert atmosphere and equalizing the chemical surface properties by removal of surface oxides, no difference in elastomer adsorption from solution was observed. It must be concluded that commonly used high molecular elastomers do not have any access to smaller carbon black pores. Since access to the surface is a prerequisite for reinforcement, it is obvious that the surface in the pores of carbon black generally does not participate in reinforcing elastomers. The elastomer adsorbed per unit external black surface area appears to be independent of the carbon chain structure, indicating that the so called surface activity of the carbon black is independent of the chain length.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3