A MICROSCOPY INVESTIGATION OF RUBBER COMPOUND CRACK PRECURSORS AND TENSILE FRACTURE SURFACES

Author:

Tunnicliffe Lewis B.1,Robertson Christopher G.2,Mars William V.2

Affiliation:

1. 1 Birla Carbon, Marietta, GA, USA 30062

2. 2 Endurica LLC, Findlay, OH, USA 45840

Abstract

ABSTRACT Tensile stress–strain testing is used to investigate the fracture behavior of carbon black–reinforced styrene–butadiene rubber, using 50 replicate specimens. Four vulcanized rubber compounds are studied: a CB-filled SBR with standard mixing conditions (control), the same formulation with intentional poor mixing of the CB, and materials identical to the control material but formed by adding minor amounts of 0.5-mm-diameter glass microspheres (beads)—serving as large model defects/inclusions—using a two-roll mill at two levels, corresponding to average values of 0.78 and 6.24 beads per gauge section region of the tensile test specimen. Microscopy analysis of the resulting fracture surfaces was conducted to complement our recent publication on Weibull failure statistics for distributions of tensile strength and crack precursor size. All 200 fractured specimens from tensile testing at 23°C were imaged with light microscopy and exhibited fracture surfaces characterized by relatively smooth planes perpendicular to the uniaxial loading direction. Most tensile failures originated from the edges of the dumbbell specimens, in line with expectations from fracture mechanics. Light microscopy revealed concentric fracture ring features of high specular reflectance emanating from crack precursors, which are a universal feature of the failure process for these compounds and independent of precursor type, size, or location. Noncontact interferometric microscopy confirmed that the rings resulted from variations in surface micro-roughness, proceeding outward from the precursor as rough–smooth–rough to the edge of the fracture surface. Fracture rings were also observed for tensile tests performed at 80°C. The variation in surface roughness of the fracture surface has parallels to the stick–slip tearing behavior seen for rubbers torn at medium to high rates. To the best of the authors’ knowledge, this is the first time that such striking features have been reported.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3