Crosslinking of Rubbers by Fillers

Author:

Rajeev R. S.1,De S. K.1

Affiliation:

1. 1Rubber Technology Center, Indian Institute of Technology Kharagpur-721302, India; email: sadhan41de@yahoo.co.in

Abstract

Abstract Oxygen containing chemical groups on the carbon black surface can react with the carboxyl groups of XNBR, or epoxy groups of ENR, or chlorosulfonated groups of CSM, during high temperature molding of the rubber-filler mixtures. This leads to crosslinking of the rubber phase. The extent of crosslinking increases if the carbon black surface is oxidized, the concentration of the reactive groups of the rubber increases, or a suitable silane coupling agent is incorporated in the rubber-filler mixtures. Similarly, high temperature molding of the XNBR-precipitated silica, ENR-precipitated silica, CSM-precipitated silica, and CR-ferrite mixtures leads to crosslinking of the rubber phases, even in the absence of conventional rubber vulcanizing agents. XNBR-ZnO mixture on high temperature molding also produces crosslinked rubbers consisting of ionic crosslinks. During mixing stage, the reactive fillers interact with the polar rubbers leading to formation of high bound rubber, presumably through hydrogen bond formation. During high temperature molding of the rubber-filler mixtures for a prolonged time, the reactive groups on the filler surface chemically react with the functional groups of the rubber chains leading to crosslinks of the rubber phase. This is evident from the rise in the rheometric torque of the rubber-filler mixture and marked changes in properties of the mixture on high temperature molding. The properties in many instances are similar to that obtained in the case of rubbers crosslinked by conventional vulcanizing agents. Infrared spectroscopy has been used to identify the chemical structures at the filler-rubber interface formed during crosslinking of the rubber by the filler.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3