Thermal Decomposition of Vulcanized Structures of Deformed Vulcanizates Containing Various Accelerators

Author:

Dogadkin B.1,Tarasova Z.1

Affiliation:

1. 1Scientific Research Institute of the Rubber Industry, Moscow, USSR

Abstract

Abstract According to the hypotheses developed by the authors, vulcanized rubber is a system in which the molecular chains are united by local molecular and chemical bonds of varying intensity. The concentration, distribution, and strength of these bonds determine the principal physical and mechanical properties of the vulcanizates. Consequently the study of the structure of the vulcanizate is of primary practical value. The explanation of the nature of the bonds in a vulcanizate by chemical methods is very difficult, mainly because of the impossibility of distinguishing the specific chemical groups which enter into the composition of the different molecular chains from those bonds between the chains which are responsible for the development of spatial structures. From this view point, the thermo-mechanical method described below, which is based on the study of stress relaxation at different temperatures, is of great significance. As was shown by Dogadkin and Reznikovskii˘, the delayed stress relaxation in a vulcanizate at temperatures up to 70° C is caused by rupture of the local intermolecular bonds and the regrouping of the structural elements of the polymeric chains without destruction of the chemical bonds between them. Accordingly, after some time at these temperatures, a practically balanced stress is established, which depends on the number of the stronger bonds remaining. At temperatures above 70° C, rupture of the chemical bonds between the chains takes place; its speed increases with decrease of the energy activating the rupture of the given type of bond. Particularly in the case of sulfur vulcanizates, we can assume that the following types of bonds exist between the chains of the rubber: (1) —C—C—, which develop as a result of the polymerizationprocesses; (2) —C—S—C— monosulfide; (3) —C—S—S—C— disulfide, and (4) —C—Sn—C— polysulfide, formed as a result of the direct participation of the vulcanizing agent, sulfur, in the process of joining of the molecular chains. The energy of these chains can be estimated as 62.7 kcal, per mole for C—C, 54.5 kcal. per mole for C—S, and 27.5 kcal. per mole for the —S—S bond. Naturally, the heat stability of a vulcanizate will depend on which of the indicated types of bonds predominates.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Properties and structure of elastomers;Journal of Polymer Science Part C: Polymer Symposia;2007-03-07

2. The effect of crosslink structure on the tensile strength and oxygen absorption characteristics of natural rubber vulcanizates;Journal of Polymer Science Part C: Polymer Symposia;1967

3. Automatic helical-spring stress relaxometer for intermittent or continuous relaxation measurements;Journal of Scientific Instruments;1963-06

4. 10.2324/gomu.29.2_77;NIPPON GOMU KYOKAISHI;1956

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3