Mixing of Carbon Black with Rubber I. Measurement of Dispersion Rate by Changes in Mixing Torque

Author:

Cotten George R.1

Affiliation:

1. 1Cabot Corporation, Billerica, MA 01821

Abstract

Abstract Analysis of the torque data obtained for a large range of carbon blacks in an oil-extended butadiene rubber (CB-441) shows that the rate of decrease of torque (after the second power peak) follows first order kinetics. The rate of decrease represents the rate of reduction in effective filled volume fraction through dispersion of carbon black agglomerates, and thus, a reduction in the volume of rubber occluded between individual aggregates within the agglomerates. The assumption that the rate of torque reduction is proportional to the rate of carbon black dispersion was tested by examining the responses to various factors influencing the mixing process. In general, the conclusions reached from the analysis of torque data were in agreement with the common industrial experience and predictions based on the mathematical analysis of dispersive mixing. Tadmor's analysis of dispersive mixing predicts that the rate of agglomerate rupture depends on the number of particle-particle contacts and thus is related to the size of individual aggregates, but is independent of agglomerate size. Thus, it is in agreement with the present findings that the rate of dispersive mixing increases with decreasing surface area and increasing structure of aggregates. Increasing polymer-filler interaction gives rise to a faster rate of dispersive mixing, possibly by increasing the effective radii of aggregates through bound rubber formation. Increasing the batch temperature increases the rate of dispersive mixing due to reduced cohesion between the aggregates and a more favorable balance between cohesive and shearing forces. Increasing carbon black loading increases the rate of dispersive mixing by increasing the viscosity and, thus, shearing forces generated during the mixing process. The technique developed in this work may provide a better means for measuring dispersibility of carbon blacks, since other available methods suffer certain disadvantages. For instance, the resistivity measurements are not only dependent on carbon black dispersion, but also on the chemical nature of its surface, while microscopic methods depend on the examination of very small samples that may not be representative of the whole batch.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3