Criteria for Unstable Tearing of Elastomers

Author:

Stacer R. G.1,Kelley F. N.1

Affiliation:

1. 1Institute of Polymer Science, The University of Akron, Akron, Ohio 44325

Abstract

Abstract 1. Unstable, or stick-slip, tearing has been evaluated in a series of unfilled elastomers. It was found that unstable tearing in these materials occurs only in well defined regions of temperature and rate. The behavior of the material in these regions follows a definite time-dependent pattern, suggesting the existence of simple time-temperature correspondence. This has been demonstrated by showing that the same shift factors that superpose other viscoelastic functions also describe the time-dependent nature of unstable tearing. Previous work showed that the magnitude of unstable tearing could be controlled by test-specimen geometry. It is concluded in this work that the mechanistic origin of unstable tearing can be traced to viscoelastic processes of the rubbery network. The combined results of these 2 studies show that unstable tearing is a characteristic feature of the polymer network which may be controlled or eliminated by test-specimen design. 2. For the amorphous elastomers investigated, it has been shown that the boundaries between regions of stable and unstable tearing can be explained in terms of simple extension properties and characteristic viscoelastic transitions of the elastomer. Specifically, the long-time (or high-temperature) boundary between conditions of stable and unstable tearing has been associated with a critical extension ratio, λc, which corresponds to an upturn in tensile stress-strain curves. If temperature and rate conditions are such that the deforming material at the tear tip does not extend beyond λc, unstable tearing does not occur. This is consistent with an anisotropic tear-tip reinforcement model of unstable tearing which has been discussed in detail. The short-time (or low-temperature) boundary between stable and unstable tearing conditions has been related to a characteristic time, ttr, associated with the onset of the rubber-to-glass transition. This characteristic time also corresponds to a change in the simple extension response of the elastomer. At times shorter than ttr, a distinct yield point was observed in constant rate stress-strain curves. It is therefore surmised that unstable tearing does not occur in this region due to the plastic yielding of the material, which interrupts the formation of the anisotropically reinforced structure at the tear tip. 3. Time-dependent tear-energy master curves of elastomers over broad time scales all display the same general features. Near the glassy region, the elastomers were found to approach a glassy tear energy of approximately 60 kJ/m2. At much longer times, in the terminal regions of the mastercurves, the tear energy dropped rapidly. In between these two extremes, a plateau was observed for all the elastomers, with NR displaying the lowest plateau slope.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3