Vulcanization. Part I. Fate of Curing System during the Sulfur Vulcanization of Natural Rubber Accelerated by Benzothiazole Derivatives

Author:

Campbell R. H.1,Wise R. W.1

Affiliation:

1. 1Monsanto Company, Organic Chemicals Division, Rubber Chemicals Research Laboratories, Nitro, West Virginia

Abstract

Abstract Several investigators have proposed mechanisms for the delayed action sulfur vulcanization of rubbers which postulate that a number of intermediate compounds containing fragments of the accelerator are formed during the vulcanization cycle. Although a number of workers have measured the change in initial accelerator and sulfur concentration in the rubber during vulcanization, none have identified and determined the intermediate compounds which appear to be formed during vulcanization. The purpose of this paper is to first confirm the existence of these intermediates and subsequently to identify and quantitatively follow their concentrations throughout the vulcanization cycle. In our initial studies we have limited our investigations to natural rubber cured with sulfur and accelerated with (i) MBT (2-mercaptobenzothiazole), (ii) (MBTS)[2,2′-dithiobisbenzothiazole)], and (iii) 2-(4-morpholinothio)benzothiazole. In order to reduce the complexity of the system, other normally used additional curing agents, notably ZnO and stearic acid, have been deleted.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3