Affiliation:
1. 1Faculty of Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-01, Japan
Abstract
Abstract
A realistic mechanical model was proposed for the laminated rubber bearing, one of the most important structural members in the base-isolation system. The model was analyzed by means of the finite-element method (FEM), up to the range of large deformation under high compressive load. The physical characteristics of the rubber material was modeled using a strain-energy-density function based on the biaxial elongation tests. The load-deformation relationship calculated by FEM using such strain-energy-density function agreed well with experimental results. Based on the simulated stress and strain distributions in the laminated rubber bearing, a mechanism of supporting the vertical load during horizontal deformation was proposed.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献