Effect of Non-Rubber Components on Storage Hardening and Gel Formation of Natural Rubber During Accelerated Storage under Various Conditions

Author:

Yunyongwattanakorn Jintana1,Tanaka Yasuyuki1,Kawahara Seiichi2,Klinklai Warunee2,Sakdapipanich Jitladda3

Affiliation:

1. 1Department of Chemistry, Faculty of Science, Mahidol University, Rama VI, Bangkok 10400, Thailand

2. 2Department of Chemistry, Faculty of Engineering, Nagaoka University of Technology Nagaoka, Niigata 940-2188, Japan

3. 3Department of Chemistry, Faculty of Science, Mahidol University, Rama VI, Bangkok 10400, Thailand Institute of Science and Technology for Research and Development, Mahidol University, Salaya Campus Putthamonthon, Nakhon Pathom 73170, thailand; email scjtp@mahidol.ac.th

Abstract

Abstract The phenomenon of storage hardening in solid natural rubber (NR) is presumed to occur by means of reactions between some non-rubber components and abnormal groups in rubber molecule. The main non-rubber constituents in NR are composed of proteins and lipids. The storage hardening behavior of NR purified by enzymatic deproteinization and transesterification was analyzed under high and low humidity conditions using phosphorus pentoxide (P2O5) and sodium hydroxide (NaOH). The NR obtained from centrifuged fresh natural rubber latex (CFNR) and deproteinized NR latex (DPNR) showed significant increase in the hardening plasticity index (PH) value during storage; while that of the transesterified NR (TENR) and transesterified DPNR (DPTE-NR) was almost constant during storage. After keeping samples under high humidity conditions, the fresh natural rubber (FNR), CFNR and DPNR showed constant PH value, while that of the TENR and DPTE-NR decreased during storage. The FNR, CFNR and DPNR showed a clear increase in the gel fraction after the occurrence of storage hardening reaction. The gel fraction showed molecular weight between crosslinks (Mc) of about 104. Glass transition temperature (Tg) of gel fraction was higher than that observed in the case of sol fraction. The formation of crosslinking and branching during accelerated storage was presumed to be due to the chemical bonding between the active functional groups in the long-chain fatty acid of phospholipids at the terminating end of rubber molecules under low humidity conditions.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3