The Indentation and Puncture Properties of Rubber Vulcanizates

Author:

Yeh G. S.1,Livingston D. I.1

Affiliation:

1. 1Research Division, The Goodyear Tire & Rubber Co., Akron, Ohio

Abstract

Abstract A detailed study has been made of the indentation and puncture properties of a number of rubber vulcanizates by a puncture method. It is shown that the characteristic relation between the force and depth of penetration, i.e., the two regions of linearity observed in a former study on a log-log plot, can be represented by two equations. The first region, in which the indenter penetrates into the rubber to a depth approximately equal to twice its diameter, can be generally described by Timoshenko's classical relation, FI=2.67 Erd In the second region, an empirically derived equation FII=1.34 Er0.5d1.5 holds. For a given rubber compound, Young's modulus calculated from the second equation is in satisfactory agreement with the modulus obtained from the first. The puncture strength and the puncture depth are both shown to be dependent upon the compounding variations and they provide useful information about the vulcanizates such as stiffness and cure. Valuable information relating to rubber abrasion and road wear may also result from studies of these two puncture properties.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3