Affiliation:
1. 1Teijin Twaron, P.O. Bax 9600, 6800 TC Arnhem, The Netherlands; email: Nico.Huntink@Twaron.com
2. 2University of Twente, P.O. BOX 217, 7500 AE Enschede, The Netherlands
Abstract
Abstract
The developments on long-term protection of rubber against aerobic aging are reviewed. Although conventional antidegradants such as N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD) and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) are still the most widely used antidegradants in rubber, there is a trend and demand for longer-lasting and non-staining products. The relatively low molecular weight (MW) antioxidants have undergone an evolutionary change towards higher molecular weight products with the objective to achieve permanence in the rubber polymer, without loss of antioxidant activity. In the last two decades, several approaches have been evaluated in order to achieve this objective: attachment of hydrocarbon chains to conventional antioxidants in order to increase the MW and compatibility with the rubber matrix; oligomeric or polymeric antioxidants; and polymer bound or covulcanizable antioxidants. The disadvantage of polymer bound antioxidants was tackled by grafting antioxidants on low MW polysiloxanes, which are compatible with many polymers. New developments on antiozonants have focused on non-staining and slow migrating products, which last longer in rubber compounds. Several new types of non-staining antiozonants have been developed, but none of them appeared to be as efficient as the chemically substituted p-phenylenediamines. The most prevalent approach to achieve non-staining ozone protection of rubber compounds is to use an inherently ozone-resistant, saturated backbone polymer in blends with a diene rubber. The disadvantage of this approach, however, is the complicated mixing procedure needed to ensure that the required small polymer domain size is achieved.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献