Lignin as a Compounding Ingredient for Natural Rubber

Author:

Sagajllo I.1

Affiliation:

1. 1London Advisory Committee for Rubber Research (Ceylon and Malaya)

Abstract

Abstract Important claims have been made in recent years regarding the capacity of lignin to reinforce natural and synthetic rubber. In 1949 Dawson reviewed the literature on the use of lignin in rubber and drew particular attention to the work of Keilen and Pollak who had shown that in certain circumstances lignin could be considered to rival EPC black in its ability to yield strong GR-S vulcanizates with high resistance to tear. Raff and his coworkers subsequently showed that the reinforcement of GR-S by lignin is enhanced if the lignin, before coprecipitation with the latex, is subjected to oxidation; other workers studied the application of lignin to the reinforcement of different elastomers, the influence of coprecipitation conditions on the properties of the product, and the problem of overcoming the delaying effect of lignin on vulcanization of lignin-natural rubber coprecipitates. Keilen and Pollak in their experiments incorporated lignin into rubber by coprecipitation at the latex stage, but they indicated that similar results could be obtained if lignin “in the gelled state” was added to rubber by milling. No reinforcement was observed however when lignin was added to rubber as a dry powder. Lignin is potentially an abundant and cheap material which according to the above claims should extend the range of useful compounds available to rubber manufacturers. The present paper describes work undertaken to gain firsthand knowledge of the technique of coprecipitating lignin with natural rubber from preserved latex, to learn something about the properties of natural rubber compounds prepared from lignin coprecipitates, and to study possible ways of incorporating lignin into rubber by means other than coprecipitation. It also records test results for masterbatches prepared by the Rubber Research Institute of Malaya from fresh latex on a pilot plant scale.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3