Affiliation:
1. 1National Bureau of Standards, Washington, D. C.
Abstract
Abstract
The formation of crystals at room temperature by stretching rubber, vulcanized or unvulcanized, has been the subject of considerable study. The crystallization of unstretched rubber at low temperatures is also well known, but with a single exception to be discussed later, the effect has commonly been considered to be limited to the unvulcanized material. In the present investigation, however, the crystallization of unstretched specimens of vulcanized rubber of low sulfur content has been accomplished. In commercial vulcanized rubber products, crystallization has not hitherto been recognized as a factor of practical importance. It is probably significant in cold climates, where some rubber products slowly undergo a great increase in rigidity and permanent set. Automobile traffic counters, for example, have been rendered inoperative by the hardening of the rubber tubing used with them. Laboratory tubing and other products made of a number of different commercial rubber compounds have become rigid after storage for some weeks in a refrigerator at about 0° C. Previous work on unvulcanized rubber showed that it can be crystallized at temperatures between + 10° and −40° C, the crystals melting in a range from about 6° to 16° C. Crystallization and fusion are accompanied by changes in volume, heat capacity, light absorption, birefringence, x-ray diffraction, and mechanical properties such as hardness. x-Ray diffraction and birefringence, of course, give the most direct evidence of crystalline structure, but in the present work change of volume, measured in a mercury-filled dilatometer, was chosen as the criterion of crystallization or fusion. Quantitative results are more easily obtained in this manner, and the experimental observations are simple. Furthermore, the method is well adapted to continuous observations over long periods of time, such as were found necessary in the present work.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献