THERMOREVERSIBLE CROSS-LINKING MALEIC ANHYDRIDE GRAFTED CHLOROBUTYL RUBBER WITH HYDROGEN BONDS (COMBINED WITH IONIC INTERACTIONS)

Author:

Li Lin12,Kim Jin Kuk1

Affiliation:

1. School of Materials Science and Engineering, Gyeongsang National University, Jinju, Gyeongnam, 660–701, Republic of Korea

2. Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract

ABSTRACT Thermoreversible cross-linking polymers are designed based on reversible cross-linking bonds. These bonds are able to reversibly dissociate and associate upon the input of external energy, such as heat or light. Reprocessibility is possible for this kind of material. The objective was to thermoreversibly cross-link maleic anhydride grafted chlorobutyl rubber (MAH-g-CIIR) via a reaction with octadecylamine, with an excess to obtain amide-salts, which form both hydrogen bonds and ionic interactions. X-ray diffraction experiments showed the presence of microphase-separated aggregates that acted as physical cross-links for both the MAH-g-CIIR precursor and amide-salts. The tensile properties were improved by converting MAH-g-CIIR to amide-salts, because of the combination of hydrogen bonding and ionic interactions. The cross-linked materials could be repeatedly compression molded at 155 °C into homogeneous films. The differential scanning calorimetry curves and Fourier transform infrared spectra indicate that hydrogen bonds are of a thermoreversible nature, but the recovery of ionic bonds is impossible. After treatment with heating-cooling for up to three cycles, the tensile strength of the thermoreversible cross-linking CIIR was greatly reduced. The gradual reduction in the effectiveness of the ionic-hydrogen bonds is the major contribution to the reprocessibility of these materials.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3