Hardness, Modulus, and Thickness

Author:

Tangorra G.1

Affiliation:

1. 1Pirelli Rubber Laboratories, Milan, Italy

Abstract

Abstract Series expansions are used to show that a simpler, more practical formula can be adopted to replace previous expressions of correlation between international degrees of hardness and shear moduli. This formula also appears to be nearer to the one deduced from the theory for the Shore durometer. General application is also given to a law relating these factors to the thickness of the test strips, which law has been previously found applicable to indenter hysteresimeters. This formula, which could probably also be used with other instruments with differently shaped indenters, has been particularly carefully checked for the ISO durometer with a ball indenter, and agrees excellently with experimental data. The mathematical relation, which has a single parameter, probably related only to shape and size of the indenter, allows the definition of an exponential parameter which generalizes the use of Scott's formula to smaller thicknesses. Finally, combination of the two new expressions makes it possible to put the dependence of degrees of hardness on thickness into a general form.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3