Effect of Carbon-Black Loading and Crosslink Density on the Heat Build-Up in Elastomers

Author:

Meinecke Eberhard1

Affiliation:

1. 1The University of Akron, Department of Polymer Science, Akron, Ohio 44325-3909

Abstract

Abstract It has been shown that it is possible to predict the viscoelastic response of elastomers and elastomeric engineering components under both load- and position-control conditions if one assumes: a) that the modulus of the materials increases with the strain amplification factor as given by the Guth and Gold equation, b) that the occluded rubber is taken into account when using this equation, and c) that the energy loss per cycle and unit volume of material is increasing with the square of the strain-amplification factor. These calculations were applied to an assembly where one unfilled section is in series with a filled one. The overall filler loading was kept constant, and it was found that the equations derived show completely different heat-generation rates for load- and position-control conditions. While the losses are the same in both sections and equal to that of the assembly as a whole under position-control conditions, they are quite different under load-control conditions. They increase with both filler loading and values of α and abnormally high local overheating in the unfilled section occurs. These considerations indicate that a uniform mixing quality is important for compounds which will be used in dynamically deformed engineering components. Under position-control conditions, poor filler dispersion will give rise to a decrease in the dynamic modulus and the energy loss per cycle, i.e., variations in the quality of the mix will cause variability of the dynamic properties. Under load-control conditions, the situation is even worse, since the energy dissipation increases with poor mixing, and local overheating of the sections containing less than the average amount of carbon black takes place. The model is obviously too oversimplified for qualitative predictions. But it still gives good qualitative indications regarding the heat-generation rate in structures made from two elastomers having different filler loadings or for imperfectly mixed compounds.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3