Affiliation:
1. 1DEPARTMENT OF MODERN MECHANICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI, ANHUI, CHINA
Abstract
Abstract
The hyperelastic behavior of unfilled natural rubber and some kinds of filled rubbers used in tire industry is tested by applying automated grid method. More accurate stress–strain data of tested rubber specimens at different temperatures are obtained. Test results show that different from the unfilled natural rubber whose stiffness increases linearly with temperature rising, the filled tire rubber has a tendency first to become soft and then to become stiff through its “critical temperature.” And this trend shift could be qualitatively interpreted by the joint action of two kinds of mechanisms, namely, the “energy elasticity” and the “entropy elasticity” effect. Besides, based on consideration of the relationship between model parameters and environmental temperature, the modified Arruda–Boyce model is extended to its explicit temperature-dependent form. Fitting results illustrate that this new model could take the temperature effect on hyperelastic behavior of tire rubbers into account well, and with an easy form, it is of convenient and practical usefulness in some relevant engineering application.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献