Affiliation:
1. 1Research Laboratories, Goodyear Tire and Rubber Company, Akron, Ohio
Abstract
Abstract
The fatigue life of natural rubber-HAF black vulcanizates showed maxima when plotted as a function of crosslink concentration as did other properties related to a tearing process such as tensile strength, crack growth, and tear strength. Accelerated-sulfur vulcanizates were superior to peroxide and nonelemental-sulfur cures; this can be attributed to an exchange of polysulfide crosslinks under stress. An effective antioxidant was essential for maximum fatigue resistance. Accelerated-sulfur systems, although having a higher original fatigue life than peroxide or nonelemental-sulfur cures, showed a rapid loss on accelerated aging in air. This would indicate that an oxidative effect was involved. Sulfur group analyses of the flexed samples showed an increase in the concentration of RSSxSR linkages but a decrease in the total polysulfide sulfur, Sx, with no change in the crosslink densities. This suggests that the polysulfide linkages not only underwent exchange during the fatigue process but also homolytic cleavage to polythiyl radicals. These radicals can add to double bonds and in the presence of oxygen initiate oxidation chains which would lead to main chain scission.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献