ISSUES WITH APPROACHES FOR SIMULATING AGING OF NUCLEAR POWER PLANT CABLE MATERIALS

Author:

Gillen Kenneth T.1,Celina Mathew C.2

Affiliation:

1. Sandia National Laboratories (retired), 132 Occidental Avenue, Burlingame, CA 94010

2. Sandia National Laboratories, Organic Materials Org. 1853, Albuquerque, NM 87185-5800

Abstract

ABSTRACT Over the past 20 y, the International Electrotechnical Commission and the International Atomic Energy Agency have published several Technical Documents describing recommended methods for carrying out accelerated radiation plus temperature aging of cable materials in nuclear power plants. These methods include the power law method, the time-dependent model, the dose to equivalent damage approach, and the simplified method approach. Because of the expected and observed changes in chemistry that occur as aging conditions transition radiation–temperature space, we highlight issues with the time-dependent and simplified method approaches by showing that they do not simulate the chemistry occurring under ambient conditions. The DED approach and a recent modification, the Matched Accelerated Conditions approach, can handle the changes in chemistry for many important cable materials and therefore offer more confident accelerated simulations. Problems with the power law method are then briefly described. Also discussed are the significant issues that occur when trying to simulate the aging of semicrystalline cable materials that show inverse-temperature effects. For these materials, degradation rates under radiation can increase as the aging temperature drops below ∼60 °C, in temperature regions where typical ambient aging conditions occur. A possible approach for dealing with such materials is suggested.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3