EFFECT OF EMULSION SBR PREPARED BY ASYMMETRIC REVERSIBLE ADDITION-FRAGMENTATION TRANSFER AGENT ON PROPERTIES OF SILICA-FILLED COMPOUNDS

Author:

Hwang Kiwon1,Song Sanghoon1,Kang Yu yeong2,Suh JaeKon3,Jeon Heung Bae2,Kwag GwangHoon3,Paik Hyun-Jong4,Kim Wonho1

Affiliation:

1. School of Chemical Engineering, Pusan National University, Busan 609-735, Republic of Korea

2. Department of Chemistry, Kwangwoon University, Wolgye-Dong, Nowon-Gu, Seoul 139-701, Republic of Korea

3. R&BD Center, Korea KUMHO Petrochemical Co., Ltd., P.O. Box 64, Yuseong, Daejon 305-600, Republic of Korea

4. Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea

Abstract

ABSTRACT The development of ultra-high-performance tires that satisfy fuel efficiency, traction, handling performance, and abrasion resistance has gained significant importance in the tire industry. Solution SBR has been used as a raw material, owing to its useful characteristics (e.g., narrow dispersity controllable microstructure and chain-end functionalization). In a recent improvement, emulsion SBR (ESBR), a high-molecular-weight compound with narrow dispersity, has been reported for application in the tire tread compounds. In particular, S,S-dibenzyl trithiocarbonate (DBTC) reversible addition-fragmentation transfer (RAFT) ESBR has exhibited excellent abrasion resistance and fuel efficiency in unfilled and carbon black–filled vulcanizates. However, owing to the symmetrical structure of DBTC RAFT ESBR, the polymer chain was shortened by the reaction of a silane coupling agent with trithiocarbonate, leading to poor abrasion resistance and fuel efficiency in the case of silica-filled vulcanizates. In this study, benzyl (4-methoxyphenyl) trithiocarbonate (BMPTC), an asymmetric RAFT agent that promotes unilateral polymer growth, was synthesized and used in the polymerization of BMPTC RAFT ESBR. Chain cleavage was not observed. Upon application to silica-filled vulcanizates, BMPTC RAFT ESBR exhibited improved abrasion resistance (by 9%), improved fuel efficiency (by 20%), and improved wet traction performance (by 10%) compared with the DBTC RAFT ESBR.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3