Binder/Filler Interaction and the Nonlinear Behavior of Highly-Filled Elastomers

Author:

Stacer R. G.1,Hübner C.1,Husband D. M.2

Affiliation:

1. 1Fraunhofer-Institut für Chemische Technologie (ICT), D-7507 Pfinztal-Berghausen, FRG

2. 2Air Force Systems Command, Astronautics Laboratory, Edwards AFB, CA 93523-5000

Abstract

Abstract 1. The small-deformation-viscoelastic response of elastomers containing nonreinforcing filler has been investigated. Nonlinear viscoelastic behavior was observed as a pronounced strain-amplitude dependence. The degree of this dependence was quantified using a power-law representation as a single nonlinear parameter, m. 2. The magnitude of m was a function of formulation variables. It was found that m increased with the volume fraction and particle size of filler material, as well as the volume fraction of plasticizer. Reduced values of m were observed in the presence of bonding agent and with greater degrees of apparent crosslinking. The latter was controlled in this study through imbalanced urethane cures. 3. Nonlinear behavior of elastomers containing nonreinforcing filler has been compared and contrasted with the data base for carbon-black-reinforced elastomers. The major difference is in the effect of the surface area of filler particles. Nonlinear response in black-filled rubbers increases with surface area, while the opposite is reported in this study. Additionally, the relationship between viscoelastic dissipation and the magnitude of nonlinear response, well established for black-filled rubbers, was not observed. These results indicate that the response of elastomers containing nonreinforcing filler, although nearly identical in appearance to that seen with reinforcing filler, is not driven by the same mechanism. 4. A binder/filler interaction model is proposed for materials containing nonreinforcing filler. This model is based on the ideal adhesive strength of the binder/filler interface. In this model, greater attraction between polymer and particle surfaces reduces molecular slippage during deformation, leading to a decreased dependence of the modulus on strain amplitude, or decreased nonlinearity. It is shown that the model provides reasonable predictions for the observed phenomena.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3