MAGNETORHEOLOGICAL ELASTOMER COMPOSITES BASED ON INDUSTRIAL WASTE NICKEL ZINC FERRITE AND NATURAL RUBBER

Author:

Moksin Nordalila1,Ismail Hanafi1,Abdullah Muhammad Khalil1,Shuib Raa Khimi1

Affiliation:

1. School of Materials and Mineral Resources Engineering, USM Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

Abstract

ABSTRACT Magnetorheological elastomers (MREs) based on waste nickel zinc ferrite and natural rubber were prepared. The amount of waste nickel zinc ferrite was varied at five levels (20, 40, 60, 80, and 100 phr) to assess the optimum amount of waste nickel zinc ferrite content for highest dynamic mechanical and tensile performance. Curing characteristics of the MREs were determined by moving disk rheometer (MDR 2000), and thermal properties were evaluated by thermogravimetric analysis (TGA). Tan δ was measured through parallel and plate rheometer over a frequency range of 0.1–100 Hz and a strain amplitude range of 0.1–6%. Tensile properties were measured with a universal tensile tester. The results revealed that tan δ, tensile properties, and thermal stability of the MREs increased with increase of waste nickel zinc ferrite contents. Anisotropic MREs, which had chain-like columnar structures of magnetic particles in the matrix as a consequence of an applied magnetic field during curing, were found to produce higher dynamic mechanical performance compared with isotropic MREs cured in the absence of a magnetic field.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3