TWO-DIMENSIONAL NONISOTHERMAL NUMERICAL ANALYSIS OF SPEED RATIO EFFECTS ON DISPERSION AND DISTRIBUTION IN HIGH-VISCOSITY PARTIALLY FILLED RUBBER MIXING

Author:

Ahmed Istiaque1,Poudyal Hari1,Chandy Abhilash J.2

Affiliation:

1. ASEC 101, Department of Mechanical Engineering, University of Akron, Akron, OH 44325-3903

2. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India

Abstract

ABSTRACT Two-dimensional, transient, and nonisothermal computational fluid dynamics simulations are conducted for high-viscosity rubber mixing in a two-wing rotor-equipped partially filled chamber of fill factor 75%. Calculations presented assess the effect of three differential speeds or speed ratios of the two rotors for the rubber mixing process: 1.0 (also called even speed), 1.125, and 1.5. A Eulerian multiphase model, the volume of fluid technique, is employed to simulate two different phases, rubber and air, by calculating the free surface between the two phases, in addition to the main governing equations such as the continuity, momentum, and energy equations. To characterize the non-Newtonian, highly viscous rubber under nonisothermal conditions, the shear rate–dependent Carreau-Yasuda model along with an Arrhenius function are employed. A set of massless particles is introduced into the chamber to calculate several parameters related to dispersive and distributive mixing characteristics. Specifically, the mixing index and maximum shear stress are analyzed for the dispersive nature, whereas cluster distribution index and length of stretch are calculated for investigating the distributive nature of the mixing process. Also, the temporal viscous heat generation rate, a good indication of the temperature rise throughout the domain, which is critical in the process and equipment design, is analyzed here. Results showed that the 1.125 speed ratio was the most efficient in terms of distributive mixing and heat generation.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3