Carbon Black in NR/BR Blends for Truck Tires

Author:

Hess W. M.1,Vegvari P. C.1,Swor R. A.1

Affiliation:

1. 1Columbian Chemicals Company, P. O. Box 96, Swartz, Louisiana 71281

Abstract

Abstract A series of ten commercial tread-grade carbon blacks were evaluated in a 60/40 NR/BR truck tire tread formulation. A number of important physical properties and performance criteria were assessed in terms of carbon black surface area and DBPA. Significant response equations were obtained for viscosity, bound rubber, resilience, heat buildup, tear strength, and dynamic properties. Dynamic modulus showed a much greater dependence on DBPA in comparison to previous studies on SBR/BR compounds. In a second designed experiment, a single carbon black (N299) was studied as a function of the NR/BR ratio and the amount of carbon black added to the BR phase. The BR black loading was varied at 30, 60, and 90 phr using separate masterbatches which were blended with NR-black masterbatches to give the same final composition for all of the compounds. Properties such as resilience, heat buildup, fatigue life, and tear strength were all improved in the direction of higher loadings of carbon black in the NR phase. A high loading of black in the BR phase caused low bound-rubber development and poor dispersion. This was found to be related to the viscosity ratio of the separate masterbatches. NR to BR viscosity ratios of about 1 to 3 produced good dispersion and high bound rubber. When the BR masterbatch viscosity was two to three times higher than the NR masterbatch, however, dispersion and bound-rubber development dropped sharply at the same total mixing energy. Low hysteresis properties were found to be most dependent on high bound-rubber development, with polymer phase distribution having a relatively minor influence. In contrast, tear strength and fatigue life reached their maximum levels when the NR was the more continuous polymer phase. High bound rubber also appears to enhance tear strength and fatigue life by improving the microdispersion of the carbon black.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3