CROSSLINK DENSITY AND ITS DISTRIBUTION IN HEAT AND OIL RESISTANT ELASTOMERS BY DOUBLE QUANTUM NUCLEAR MAGNETIC RESONANCE

Author:

Porter Christopher1,Zaman Badruz1,Pazur Richard1

Affiliation:

1. Department of National Defense, Quality Engineering Testing Establishment (QETE), Polymer and Textile Science, Ottawa, Ontario K1A 0K2, Canada

Abstract

ABSTRACT Double quantum (DQ) nuclear magnetic resonance (NMR) was used to characterize the crosslink density, crosslink density distribution, and defect level in a series of heat and oil resistant elastomers. A wide range of defect levels, crosslink densities, and crosslink density distributions was measured, and results depended on elastomer type and compound formulations, including the vulcanization system. The sol fraction defect level generally correlated with the concentration of added plasticizer in the formulation. The presence of polar side chains appeared to cause additional dynamic contributions to the dangling chain end fraction. The large differences in elastomer composition and rubber formulations prevented meaningful correlation of the measured crosslink densities with the low strain modulus. Fast Tikhonov regularization and log normalization fitting of the corrected DQ build-up curve was extremely useful to provide insight into the modality and widths of the crosslink density distributions. A high degree of heterogeneity of the crosslink network of heat and oil resistant elastomers was found. Crosslink density distributions were explained in terms of the polymer chain structure comprised of monomer sequencing coupled with the position of the crosslinking sites. The type of vulcanization system had a lesser effect of the nature of the crosslink density distribution. The primary polymer chain crosslinking sites may become segregated from the continuous phase due to polarity differences seen in the microstructure of oil and heat resistance elastomers. The development of such micromorphologies can favor curative partitioning. The sole use of DQ NMR can provide valuable insight into the nature of the polymer chain structure and crosslink network in rubber.

Publisher

Rubber Division, ACS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3