BETTER BALANCE OF SILICA-REINFORCED NATURAL RUBBER TIRE TREAD COMPOUND PROPERTIES BY THE USE OF MONTMORILLONITE WITH OPTIMUM SURFACE MODIFIER CONTENT

Author:

Fathurrohman Mohammad Irfan12,Rugmai Supagorn3,Hayeemasae Nabil1,Sahakaro Kannika1

Affiliation:

1. Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand

2. Indonesian Rubber Research Institute, 1 Salak Road, Bogor, West Java 16151, Indonesia

3. Synchroton Light Research Institute, 111 Sirindhornwitchothai Boulevard, Muang, Nakhon Ratchasima 30000, Thailand

Abstract

ABSTRACT Reinforcement of silica in tire tread compounds is known to reduce hysteresis or energy loss, which leads to a production of energy-saving tires. Even though silica–silane technology has been well established, further development to enhance its performance is still needed. One of the approaches is to use hybrid or dual filler. The use of silica-organomodified montmorillonite (MMT) dual filler in the reinforcement of natural rubber (NR) truck tire tread compounds is investigated. The NR-MMT master batches were prepared by using the in situ organomodified and latex compounding method. Because the surface-modifying agent or surfactant is a key factor in determining the level of MMT dispersion in the rubber matrix, the effect of quaternary amine salt (Q) contents on mechanical and dynamic properties of NR tread compounds reinforced by silica-MMT was studied. The results revealed that MMT and Q can effectively reduce the filler–filler interaction and complex viscosity owing to a good dispersion of MMT and silica in the NR matrix and Q, which acts as a dispersing agent in addition to the silane coupling agent used in the compound, leading to improvement in tensile, abrasion resistance, and dynamic mechanical properties with an increasing amount of Q. Furthermore, at the optimum content of the surfactant used (36 wt%), the silica-MMT–reinforced NR exhibited improved tensile strength (+4%), wet grip, and rolling resistance, respectively, as indicated by loss tangent at 0 °C (+6%) and 60 °C (−15%), while maintaining a modulus at 300% strain and abrasion resistance as compared with the silica-NR reference compound. Such a dual-filler system demonstrates its potential use for tire treads with better performance.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3