ADSORPTION OF WATER-EXTRACTABLE PROTEINS IN NATURAL RUBBER LATEX SERUMS BY POLY(METHYL METHACRYLATE)/POLYETHYLENEIMINE CORE-SHELL NANOPARTICLES

Author:

Jivapongvitoon Aditjaya1,Sunintaboon Panya1,Loykulnant Surapich2,Suchiva Krisda12

Affiliation:

1. Department of Chemistry, Faculty of Science, Mahidol University, Rama Vi, Bangkok 10400, Thailand

2. National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand

Abstract

ABSTRACT Poly(methyl methacrylate)/polyethyleneimine (PMMA/PEI) core-shell nanoparticles were prepared by emulsifier-free emulsion polymerization. Micrographs from a scanning electron microscope and transmission electron microscope displayed their spherical shape with core-shell morphology in which PMMA was a core and PEI was a shell. The PMMA/PEI nanoparticles' ability to adsorb proteins from the serum of commercial low-ammonia preserved fresh field natural rubber latex was illustrated. The driving force for adsorption was proposed to be mainly via electrostatic interaction between the protonated amino groups of PEI chains on the nanoparticles' surface and phospholipids or protein molecules on NR particles. The reduction percentage was about 50%, depending on the content of PMMA/PEI nanoparticles and mixing time. For comparison, the protein reduction performance by the nanoparticles with two additional extracted serums, high-ammonia preserved concentrated NRL and Thai advanced preservative system NRL, which have different initial protein contents and pH values, was also investigated. The preliminary evaluation of PMMA/PEI nanoparticles' performance in sulfur-prevulcanized high-ammonia preserved concentrated NRL was also studied. Its corresponding sheet had lower extractable proteins by 50% and had tensile strength and elongation at break of 25.5 MPa and 715%, respectively.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3