Affiliation:
1. Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Via Mancinelli 7, 20131 Milano, Italy
Abstract
ABSTRACT
A simple, versatile, sustainable, not expensive method for the functionalization of sp2 carbon allotropes, both nano-sized and nano-structured, without altering their bulk crystalline organization, is presented. Carbon materials available at the commercial scale were used: furnace carbon black (CB), nano-sized graphite with high surface area, and multiwalled carbon nanotubes. A bio-sourced molecule, 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3-propanediol (serinol pyrrole), was used for the functionalization. Serinol pyrrole (SP) was obtained from serinol through a reaction with atomic efficiency of about 82%, performed in the absence of solvents or catalysts. Synthesis of serinol pyrrole was performed as well on carbon allotropes as the solid support. Adducts of serinol pyrrole with a carbon allotrope were prepared with the help of either thermal or mechanical energy. Functionalization yield was in all cases larger than 90%. With such adducts, stable dispersions in water and in NR latex were prepared. A few layers of graphene were isolated from the water dispersions, and NR-based composites precipitated from the latex revealed very even distribution of fine graphitic particles. Composites were prepared, based on NR, IR, and BR as the rubbers and CB and silica as the fillers, with different amounts of CB–SP adduct, and were cross-linked with a sulfur-based system without observing appreciable effect of functionalization on vulcanization kinetics. The CB–SP adduct led to appreciable reduction of the Payne effect.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献