EFFECT OF PROTEIN ADDITION ON PROPERTIES OF GUAYULE NATURAL RUBBER

Author:

Lhamo Dhondup1,McMahan Colleen1

Affiliation:

1. U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Laboratory, Albany, CA 94710

Abstract

ABSTRACT Parthenium argentatum, commonly known as guayule, is a desert shrub cultivated as a domestic source of natural rubber in the semi-arid southwestern United States. Guayule natural rubber (GR) may be used to replace petroleum-based rubber or in place of Hevea natural rubber (NR), but substitution must take into consideration differences in physical and chemical properties. Currently, Hevea NR is required in tire applications, especially aircraft and truck tires, because of its high oxidative resistance, rapid cure rate, and exceptional stress–strain response. These outstanding features are attributed to the presence of nonrubber constituents, mainly proteins and lipids, which cause the rubber to gel, and they contribute to strain-induced crystallization. In contrast, GR is low in proteins and is thus deprived of some attributes of Hevea. Addition of amino acids and proteins to guayule could potentially improve performance and thereby widen the range of applications for use. In a previous study, amino acids blended with GR latex improved thermo-oxidative stability, served as plasticizers and cure accelerators, and enhanced green strength slightly, but tensile strength was not improved. Here, a series of bio-based commercial proteins (gelatin, soy, albumin, casein, zein, gliadin, and gluten) were added to GR as a latex blend. In general, protein addition reduced bulk viscosity and improved thermo-oxidative stability. The gel content and green strength of the polymer–protein blends were increased, with the exception of gliadin, but not to levels observed for Hevea. Effects on vulcanization and mechanical properties in compounds were surprisingly influenced by the choice of antioxidants used. Our results demonstrate the potential of proteins as bio-based rubber compounding additives.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3