Properties of Resilin, a Rubberlike Protein

Author:

Weis-Fogh Torkel1

Affiliation:

1. 1Zoophysiological Laboratory B, University of Copenhagen, Denmark and Department of Zoology, Cambridge University, England

Abstract

Abstract There is much circumstantial evidence in favor of the belief that elastin and some other structural proteins exist in the rubberlike state of matter (see reviews by Wöhlisch, 1939; Astbury, 1940; Meyer, 1950; Kendrew, 1954), but it will be shown that the crucial evidence from thermodynamic experiments is ambiguous. The discovery of a new type of highly elastic structural protein, resilin ( Weis-Fogh, 1960; Bailey and Weis-Fogh, 1961), made it possible to re-investigate the problem by using more suitable samples. Since the thermodynamic experiments reported here gave a clear-cut answer, it was legitimate to interpret in detail the mechanical and optical properties of resilin according to the kinetic theories of rubber elasticity and so to obtain valuable information about the molecular structure of at least one rubberlike protein (Weis-Fogh, in preparation). Resilin is the essential elastic component in certain mechanical springs in the cuticle of arthropods (cf. the Latin resilire, to spring back) and it has a number of properties which make it ideally suited for this type of investigation (Weis-Fogh, 1959; 1960). When swollen with water, it exhibits typical long-range elasticity, it is heat-stable up to 140° C, crosslinked by very stable covalent bonds and insoluble in all solvents that do not break the peptide backbone but it is easily digested by all kinds of proteolytic enzymes. Moreover, it is secreted as thick continuous layers by the epidermis in a pure form unmixed with other proteins, lipids or polysaccharides and spatially separated from chitin, the only other structural component of the rubberlike cuticle (Weis-Fogh, 1960; Bailey and Weis-Fogh, 1961). It is thus possible to obtain native resilin in the form of relatively large, homogeneous samples, 0.1 mm thick and 1 mm long. Such samples are hyaline, devoid of color, and mechanically as well as optically isotropic in all directions and at all degrees of swelling. They are also devoid of structure (light and electron microscopy), and no trace of crystallinity has been found (X-ray diffraction) even in samples that were stretched near to the breaking point and then slowly dried (Elliott, Huxley, and Weis-Fogh, in preparation). The amino acid composition is unique and different from that of elastin, elastoidin, silk fibroin and collagen, and about one third of the side chains carry polar groups (Bailey and Weis-Fogh, 1961). The rubberiness of elastin is generally thought to be intimately connected with the scarcity of polar groups (5%; cf. Lloyd and Garrod, 1946). This paper will deal with experiments that show that the elastic force of resilin is connected with entropy changes caused by deformation, as in true rubbers, rather than with changes in internal energy, as in most solids.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EFFECT OF MOLECULAR ENVIRONMENT ON PROTEIN RUBBER PROPERTIES;Rubber Chemistry and Technology;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3