Affiliation:
1. Deutsches Institut für Kautschuktechnologie E.V., Eupener Str. 33, 30519 Hannover, Germany
Abstract
ABSTRACT
The surface of various carbon black and silica grades is characterized via static gas adsorption using different gases. From decomposition of the adsorption isotherm into distinct energetic contributions, the adsorption energy distribution as well as the surface area are obtained. The decomposition is done by an iterative expectation maximization algorithm specifically designed for this problem. It is found that the adsorption isotherms of the various gases differ significantly in the low-pressure regime, leading to characteristic energy distributions with distinct maxima. As expected, the mean adsorption energy generally increases with the cross section of the gases, and systematic deviations are found reflecting the polar and dispersive interaction characteristics of silica and carbon black, respectively. The surface fractal dimension of two different carbon black grades is estimated using the yardstick method. The obtained values 2.6 and 2.7 agree with previous findings that the carbon black surface morphology is very rough. The adsorption of CO2 on both carbon blacks delivers unexpectedly low values of the monolayer coverage or specific surface area, indicating that mainly high energetic sites of the surface are covered. In consequence, compared with N2, a relatively high value of the mean adsorption energy is found. For both investigated silicas, the mean adsorption energy scales with the quadrupole moments of CO2 and N2, which is indicative of a large polar contribution to interaction energy.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献