Affiliation:
1. Tun Abdul Razak Research Centre, Hertford, U.K.
2. Rubber Technology Centre, Malaysian Rubber Board, Sungai Buloh, Malaysia
Abstract
ABSTRACT
Curing rubber is a complex process that involves the insertion of cross-links to convert the rubber into a useful functional material. The estimation of the cure time needed for product manufacture of small or thin walled products is often arrived at by means of a rheometer trace. Although this has been recognized as adequate for thin walled products, the production of large rubber articles requires a more rigorous analysis of cure kinetics for an essentially non-isothermal process. Often finite element analysis is used to generate non-isothermal temperature histories in a thick component, and then an appropriate cure kinetic equation is solved to predict the state of cure. In addition to generating the capability for cure time prediction, there is a need in the industry to minimize cycle time, improving productivity and therefore costs involved in product manufacture. For large products, the viability of the use of extrusion molding, where the rubber is extruded into a heated mold at the same temperature as the mold, has been demonstrated in previous reported work in this laboratory. The present work explores, via simulation, the feasibility of using extrusion molding as a manufacturing method for large components. The cure simulation module of Autodesk Moldflow has been used to compare the state of cure of a laminated bearing manufactured by conventional compression molding and extrusion molding. Previous experimental data on the temperature histories of a large laminated bearing manufactured using compression molding are compared with simulation data. Simulation data are then presented on manufacturing the bearing using extrusion molding. The aim is to demonstrate the usefulness of extrusion molding for very large components and to illustrate the advantages of using simulation codes to assist in shortening the cycle time in product manufacture.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献