Recent Advances in Anionic Synthesis of Functionalized Polymers

Author:

Quirk Roderic P.1,Yin Jian1,Guo Shao-Hua1,Hu Xiao-Wei1,Summers Gabriel J.1,Kim Jungahn1,Zhu Lin-Fang1,Ma Jing-Jing1,Takizawa Toshiki1,Lynch Thomas1

Affiliation:

1. 1Institute of Polymer Science, The University of Akron, Akron, Ohio 44325-3909

Abstract

Abstract There has been growing interest and research on new synthetic methods for the preparation of well-defined polymers with in-chain and chain-end functional groups. These functional groups in polymers can participate in (a) reversible ionic association; (b) chain extension, branching or crosslinking reactions with polyfunctional reagents; (c) coupling and linking with reactive groups on other oligomer or polymer chains; and (d) initiation of polymerization of other monomers. It is noteworthy that the use of end-functionalized polybutadienes formed by reaction of poly(butadienyl)lithium with 4,4′-bis(diethylamino)-benzophenone has been reported to provide marked improvements in the wear and traction properties of tires. In order to exploit the unique potential of functionalized polymers, it is important to consider the scope and limitations of current functionalization methodology using anionic polymerization. Anionic polymerization approaches the goal of synthesizing polymers with predictable, well-defined structures in certain systems such as diene, styrene, methacrylate, and heterocyclic monomers, which proceed in the absence of chain termination and chain transfer reactions. These living polymerizations generate stable, anionic polymer chain ends when all of the monomer has been consumed. In principle, these anionic chain ends can react with a variety of electrophilic species to generate a diverse array of functional groups. Unfortunately, many of the reported functionalization reactions have not been well characterized. Another limitation of the use of specific electrophilic functionalization reactions is the necessity of developing, optimizing, and characterizing new procedures for each different functional group. Variables such as chain-end structure, solvent, temperature, concentration, stoichiometry, mode of addition of reagents, and polar additives can have dramatic effects on yield and product distributions. This review will first provide a critical overview of some recent developments in the use of specific functionalization reactions to prepare polymers labeled with carboxyl, hydroxyl, amino, and sulfonate end groups via alkyllithium-initiated polymerization methods. In addition, a recently developed methodology will be described which utilizes the addition reactions of organolithium compounds to substituted 1,1-diphenylethylenes as a general, quantitative functionalization reaction, independent of the specific functional group.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3