Morphology of Elastomeric Alloys

Author:

Abdou-Sabet Sabet1,Patel Raman P.1

Affiliation:

1. 1Monsanto Chemical Company, 260 Springside Drive, Akron, Ohio 44313

Abstract

Abstract The field of thermoplastic elastomers has shown an explosive growth with the successful commercialization of elastomeric alloys (EAs) in 1981, based on the original work of Coran, Das, and Patel on dynamic vulcanization and the discovery of preferred cure system by Abdou-Sabet and Fath. These discoveries have led to the development of commercial products having true elastomeric properties while maintaining excellent thermoplastic processing. The success of EAs in the marketplace has led to the introduction of new products by Monsanto and others at a rate of 60 products per year in the last half of the eighties. Elastomeric alloys have been characterized as compositions containing rubber particulate domains approximately 1–2 µm in diameter in a matrix of thermoplastic resin. Such dispersed phase morphology has not been widely accepted, especially when it came to explaining the true elastomeric properties of the soft elastomeric products, i.e. 64 and 55 Shore A hardness products. Interaction among the rubber particles leading to a network of vulcanized elastomer phase that gave the appearance of two continuous networks has been proposed. In this paper, the morphology of EPDM/polypropylene elastomeric alloys is examined with some detail, and evidence leading to dispersed phase morphology is provided. There are several variables to such an investigation which can be grouped under the following headings: 1. Molecular weight of EPDM and polypropylene (PP). 2. Ratio of EPDM to PP. 3. Crosslinked or uncrosslinked blend. 4. Degree of crosslinking. 5. Type of crosslinks. 6. Typical and commercial products. It is not the subject of this paper to review the morphology of different binary polymer blends, which have been extensively covered in the literature. It can be concluded that a variety of morphologies can be obtained, however, depending on the mixing conditions, polymer ratios, relative surface energies of the polymer pair, and viscosities and molecular weights of the two polymers. In this study, the mixing conditions were kept similar as much as possible to eliminate the possibility of morphological changes as a function of the applied mixing intensity as influenced by shear rate, mixing time, and temperature.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3