Uniaxial Deformation of Rubber Cylinders

Author:

Mott P. H.1,Roland C. M.1

Affiliation:

1. 1Chemistry Division, Code 6120, Naval Research Laboratory, Washington, DC 20375-5342

Abstract

Abstract Stress, strain and optical birefringence measurements were made on elastomeric cylinders deformed in tension and compression. The birefringence data enables the actual stress to be determined even when the deformation is not homogeneous. In the absence of lubricant, uniaxially loaded rubber cylinders deviate from homogeneous deformation due to bonding of the cylinder ends. The existing analysis to correct the force-deflection curve for the effect of this sticking, strictly valid for infinitesimal strains, is premised on the idea that the deformed cylinder has a parabolic profile. Experimentally, however, it was found that slender rubber cylinders assume a much flatter profile, while maintaining constant volume, when deformed. Nevertheless, the accuracy of the stress-strain curve when the standard correction is applied turns out to be quite good, partially a result of cancellation of two, relatively small, errors. This accuracy was assessed by comparison of force-deflection data from bonded cylinders both to stress-strain data obtained on lubricated cylinders and to the stresses deduced from the measured birefringence.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frictional slippage of elastomeric disks compressed between rigid platens and subjected to torsion;International Journal of Solids and Structures;2024-06

2. Mechanics of the Tread Pattern;Advanced Tire Mechanics;2019

3. Analytical model of elastomer seal performance in oil wells;Applied Mathematical Modelling;2015-06

4. Analytical solutions for bonded elastically compressible layers;International Journal of Solids and Structures;2015-04

5. Compression and Deformation of Cylindrical Rubber Blocks;MAPAN;2013-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3