Affiliation:
1. 1Institute of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301
Abstract
Abstract
Results of experimental and theoretical studies of injection molding of rubber compounds have been reported. Characterizations on the rheological properties and the vulcanization kinetics of rubber compounds were carried out by means of MPT and DSC, respectively. The models were employed to fit these experimental data. An attempt has been made in extending the proposed empirical kinetic model based on DSC data to similar curing data obtained by means of the MDR technique. The heat-transfer effect due to the large sample size used in MDR measurements has been found to have a small effect on the kinetic data. Due to the different principle of state-of-cure measurements in MDR and DSC, the model parameters of curing kinetics have been found to be different in these measurements. A two-dimensional flow simulation of generalized Newtonian fluids based on both finite-difference and finite-element methods has been performed. The pressure development at various positions along the flow path during the filling stage of the molds was obtained experimentally for various injection speeds. The predicted results on pressure development during cavity filling showed qualitative agreement with the experimental data. Possible reasons for the observed discrepancy in pressure traces are: neglect of local extra pressure losses (in the juncture sections), compressibility of rubber compounds, leakage (back-flow) of material during injection, and voids formation in the injection chamber. The study on the vulcanization behavior of rubber compounds during injection molding process has also been done. The proposed empirical kinetic and induction time models were able to satisfactorily predict the cure levels of molded rubber products. At the same time, the results predicted by employing nth order kinetics were found to be unsatisfactory. The contribution of nonisothermal induction time in calculating cure levels of the molded rubber products was found to be significant. The mechanical properties and anisotropy have been investigated for two rubber compounds. It is suggested that there exists a mold temperature at which the properties and cycle times are optimal, and the filler type shows a significant effect on the tensile modulus. The rubber moldings were found to be highly anisotropic in mechanical behaviors. The anisotropy could be reduced significantly at high injection speed due to the faster stress-relaxation process.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献