Recent Advances in Structural Characterization of Elastomers

Author:

Tanaka Yasuyuki1

Affiliation:

1. 1Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan

Abstract

Abstract One of the main targets of the structural characterization of elastomers so far has been the correlation of the polymerization conditions with the properties of the resulting polymers. The first step is the analysis of polymer structure, such as the chemical composition of copolymers, isomeric structure of diene polymers, degree of branching, extent of modification, functionality of end groups, amounts of abnormal groups, tacticity, and so on. Progress in nuclear magnetic resonance spectroscopy (NMR) makes possible the second step, which is the structural characterization of polymer chains, such as the sequence distribution of comonomer units in copolymer, isomeric units in diene polymers, configurational sequences in vinyl polymers, head and tail arrangement of monomer units. Recent development of FT-NMR spectroscopy, high-field spectroscopy from 300 MHz to 600 MHz at 1H-NMR, solid-state 13C-NMR, and two-dimensional NMR has facilitated a more detailed analysis of these structural features. The complexity of the structure of elastomers, which is derived from highly controlled copolymerization processes, leads to the widespread application of modern FT-NMR spectroscopy. It may reasonably be said that a fair number of structural problems in elastomers has been solved by NMR analysis. The high sensitivity of Fourier-transform infrared spectroscopy (FT-IR) has enabled one to determine trace structural changes in elastomers. Coupled on-line techniques such as gas-chromatography-mass-spectrometry combined with pyrolysis, liquid chromatography-NMR, and gel permeation chromatography-FT-IR will be powerful tools for the characterization of elastomers. Progress in analytical instruments has stimulated the development of high-performance elastomers, the synthesis of new speciality elastomers, and the elucidation of mechanisms for property enhancements. The use of modern instruments and a combination of ordinary methods of structural analysis have satisfied needs to some extent. However, a newer method of structural characterization is always desired in order to achieve higher orders of information. for example, the characterization of inhomogeneity along the polymer chain and between the polymer chains has become an important problem, especially in polymer blend systems. As to the former problem, spectroscopic methods provide only limited information. Although the NMR and FT-IR spectroscopies are very powerful tools for the analysis of short sequence distributions, it is difficult to characterize the distribution of long sequences and hybrid systems containing random and blocked sequences along the polymer chain. Gel permeation chromatography (GPC) is one of the most popular techniques for the analysis of molecular-weight distribution. However, it provides complicated information including molecular-weight distribution and chemical-composition distribution in the case of copolymers. Recent progress of high-performance liquid chromatography (HPLC) has provided a new powerful tool for the structural characterization of copolymers. It is appropriate to review the recent advances in structural characterization of elastomers, especially the characterization of microstructure of polymer chains, from the viewpoints of methodology and applicability of new methods. As to the NMR analysis of elastomers, reviews are available. Here, considerable attention is focused on the procedures for the assignment of signals, because the applicability of a NMR method is based on the reliability of the signal assignments. The other topics are selected to provide direct information for polymer synthesis or polymer properties.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3