DEVELOPMENT OF HYDROGENATED SBR-BASED VULCANIZATE WITH SUPERIOR TIRE TREAD PERFORMANCE

Author:

Dolui Tuhin12,Chanda Jagannath2,Ghosh Prasenjit2,Mukhopadhyay Rabindra2,Banerjee Shib Shankar1

Affiliation:

1. 1 Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India

2. 2 Hari Shankar Singhania Elastomer and Tyre Research Institute, Plot No. 437, Hebbal Industrial Area, Mysore 570016, Karnataka, India

Abstract

ABSTRACT Currently, the tire industry is exploring eco-friendly tires with improved rolling resistance, traction, abrasion resistance, and fatigue properties. The present study investigates the potentiality of the hydrogenated styrene butadiene rubber (HSBR), a special and modified grade of styrene butadiene rubber (SBR) as a tyre tread material. The rheological, mechanical, dynamic mechanical, abrasion resistance, fatigue resistance, aging resistance and ozone resistance properties of the developed HSBR-based composites were critically evaluated and compared with those of conventional rubbers such as natural rubber (NR), emulsion styrene butadiene rubber (ESBR) and solution styrene butadiene rubber (SSBR) based composites. Interestingly, the HSBR-based vulcanizates exhibited superior modulus, tensile strength, abrasion resistance, fatigue crack growth resistance, resistance to thermo-oxidative aging, and ozone resistance as compared to the conventional SBR–based vulcanizates. The modulus at 300% elongation of the HSBR-based vulcanizate was approximately 74% and 11% higher than that of the ESBR- and SSBR-based composites, respectively, whereas the improvements in tensile strength were approximately 88% and 64% and the improvements in abrasion resistance were approximately 250% and 200% than that of the ESBR and SSBR vulcanizates, respectively. The tensile strength and fatigue resistance characteristics of the HSBR vulcanizate were also nearly similar to those of the NR vulcanizate. The findings demonstrate that HSBR can be a potential tire tread material with robust physico-mechanical properties and durability.

Publisher

Rubber Division, ACS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3