The Dispersion of Carbon Black in Rubber Part I. Rapid Method for Assessing Quality of Dispersion

Author:

Coran A. Y.1,Donnet J-B.2

Affiliation:

1. 1Monsanto Chemical Company, 260 Springside Drive, Akron, Ohio 44333

2. 2Centre de Recherches sur la Physico-Chemie des Surfaces Solides, 24 Avenue du Kennedy, 68200 Mulhouse, France

Abstract

Abstract Carbon black is the most important reinforcing filler for rubbers. The incorporation of carbon black into rubber vulcanizates generally gives improved strength, extensibility, fatigue resistance, abrasion resistance, etc. In order to exert its beneficial influence on the properties of rubber vulcanizates, the carbon black must be sufficiently dispersed therein. Indeed, poor dispersion can, in itself, give rise to detrimental effects (e.g. reduced product life, poor performance in service, poor product appearance, poor processing characteristics, poor product uniformity, raw-material waste, high finished-product rejection rates, and excessive energy usage). These inadequacies are generally the result of the presence of rather large, undispersed agglomerates. The present work was initiated in order to develop an improved understanding of the carbon-black dispersion process including the understanding of factors which affect the kinetics of dispersion. The work described here is focused on methodology for reproducibly mixing carbon black with rubber in the laboratory, and reproducibility, but rapidly and easily estimating the degree of dispersion of the carbon black into the rubber as a function of mixing time. Procedures were developed for introducing rubber, filler, and other ingredients into a small, laboratory internal mixer and for mixing the batches for various periods of time. Also, an improved, simple-to-use, reproducible method for determining the degree of carbon black dispersion in rubber has been adapted. The extent of dispersion was correlated with various measures of tensile strength and with other performance-related properties.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3