Affiliation:
1. 1Rubber Technology Centre Indian Institute of Technology Kharagpur- 721302, India; email: anilkb@rtc.iitkgp.ernet.in
Abstract
Abstract
Epoxidized natural rubber (ENR) / silica organic-inorganic hybrid nanocomposites were prepared by using a sol-gel technique. Tetraethoxysilane was used as the precursor for the in-situ generation of silica. The choice of ENR as a matrix was made because of its polar nature which can interact with the in-situ generated silica. The sol-gel reaction was carried out at room temperature by dissolving the rubber in tetrahydrofuran solvent using hydrochloric acid as the catalyst. The resultant composite films appeared transparent up to 50 wt% of tetraethoxysilane loading. Dispersion of the discrete silica particles having dimensions of 15 – 100 nm was observed through transmission electron microscope. Scanning electron microscopic studies did not produce any evidence for formation of silica network within the bulk of the composite. Infrared spectroscopic studies indicated the occurrence of chemical interaction within the rubber /silica organic-inorganic interfaces which was further supported by the insolubility of the respective samples in tetrahydrofuran under the ambient conditions. Mechanical reinforcement within the hybrid nanocomposites, both at high and low temperature regions, was demonstrated through dynamic mechanical analysis. The composites exhibited superior tensile strength and tensile moduli compared to the gum rubber samples. Further reinforcement was noticed when the rubber phase in the nanocomposites was cured with either benzoyl peroxide or dicumyl peroxide. The dicumyl peroxide cured hybrid composites displayed 112% improvement in tensile strength over the control crosslinked rubber sample, probably due to synergisms of nanosilica reinforcement and crosslinking of the rubber phase in the hybrids.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献