Influence of Nanosilica Particles on Hysteresis and Strain Induced Crystallization of Natural Rubber as Investigated by a Real Time True Stress-True Strain Birefringence System

Author:

Fiorentini F.1,Cakmak M.1,Mowdood S. K.1

Affiliation:

1. 1Polymer Engineering Institute, University of Akron, Akron, OH 44325; email: cakmak@uakron.edu

Abstract

Abstract In this paper, the influence of nanosilica particles on hysteresis and stress induced crystallization of natural rubber compounds is described. For this purpose a newly developed uniaxial stretching system that monitors birefringence, true stress and true strain was used in real time while stretching and retraction is applied to the nanocomposite sheets. This allowed us to link the continuous structural measurements - as represented by birefringence - and the true mechanical properties during the actual stretching and retraction stages as influenced by the presence of nanosilica particles. The birefringence measurement system was also shown to be quite robust in detecting very low levels of retardation prevalent in rubbers. The stress optical behavior of unfilled NR compounds was compared with those filled with 5 phr and 10 phr nanosilica particles. This study allowed the determination of a critical birefringence value above which strain - induced crystallization occurs in the NR compounds. The results indicate that the addition of nanosilica reduces the stress optical constant of natural rubber compounds. In addition, the critical birefringence, above which the strain - induced crystallization occurs, decreases in the presence of 5 phr nanosilica thus indicating the enhancement of the crystallization process at this loading. However, the nanosilica loading beyond 5phr was not found to be a further benefit to strain - induced crystallization mostly because of the introduction of large surface area nanosilica agglomerates that act as a physical barrier between the chains that also most likely suppresses the crosslinking reaction during the preparation.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3